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Reynolds-number effects on the structure of a 
turbulent channel flow 
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A high resolution, two component laser-Doppler anemometer has been used for 
turbulence measurements a t  a high data rate in a channel flow of water. 
Measurements of the velocity components in the stream direction and in a direction 
normal to the wall are reported over the Reynolds number range of 300040000. The 
combination of high spatial resolution and high data rates enabled accurate 
reconstruction of time dependent velocity traces. Long- time statistical averages of 
these signals clearly show that profiles of the dimensionless turbulence quantities 
such as turbulence intensities and Reynolds stress are strongly Reynolds-number 
dependent over a large part of the channel flow. For instance, in the Reynolds- 
number range of this investigation, it is shown that the fluctuating turbulence 
quantities do not scale with wall variables even as close as 15 viscous lengths from 
the wall. The velocity traces and associated power spectra exposed two phenomena 
which may explain the Reynolds number dependencies. 

1. Introduction 
This paper is a report of laser-Doppler anemometer (LDA) velocity measurements 

made in turbulent channel flows over the range, 3000 d Re d 40000. (The notation 
denotes a Reynolds number based on centreline velocity and half channel width.) 
The purpose of the investigation is to test the validity of the inner scaling laws in this 
range. Attention will be paid to  the effect of Reynolds number on the small-scale 
structures in the inner region. 

It has been experimentally observed that the mean velocity profiles in turbulent 
wall bounded flows can be divided into outer and inner regions. In general, the outer 
region of a channel flow is located in the central portion of the channel and the flow 
is controlled primarily by inertial forces. Although the outer region is influenced by 
the effects of the wall, the structure of the flow tends to  be more wake-like in 
character. The significant parameters are the centreline velocity, friction velocity, 
and the half-channel thickness, the so-called ‘outer variables ’. Adjacent to the 
channel walls, the flow is dominated by viscous forces. This is the part of the flow 
that is significantly affected by the presence of the solid surface. Here the ‘inner 
variables ’, the kinematic viscosity and the friction velocity, are important. 

The classic idea of inner scaling is that if one were to measure a number of profiles 
of a particular turbulence quantity a t  different Reynolds numbers, (say, for example, 
the root-mean-square of the velocity fluctuations) then each of the profiles, when 
non-dimensionalized using inner variables, should collapse onto a single curve. This 
should hold true for all of the turbulence quantities (e.g. mean velocity, r.m.s.- 
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velocity fluctuations, Reynolds stress, power spectra). Inner scaling holds that there 
should be a single, Reynolds-number independent, non-dimensional profile for each 
of these turbulence quantities. The results of this investigation demonstrate that 
inner scaling is not valid in the Reynolds number range, 3000 < Re < 40000. 

1 . 1 .  A review of the turbulent channel $ow literature 
Inner scaling of the mean streamwise velocity in the near-wall region of plane-wall 
bounded turbulent flows is well documented. Excellent review articles were written 
by Clauser (1956), and Coles (1956) for turbulent boundary-layer flows with zero 
pressure gradient. Two of the more noteworthy works on turbulent channel flow were 
Laufer (1950), and Comte-Bellot (1965) over the Reynolds number range of 
1200@230000. Additional work by Eckelmann (1974) has extended the inner scaling 
of mean streamwise velocity to Reynolds numbers as low as 2800. However, there 
has not yet been a rigorous demonstration of the inner scaling of the fluctuating 
quantities in channel flows. 

One of the first attempts to scale fluctuating quantities was made by Laufer 
(1950). A number of measurements of streamwise turbulence intensity, u’, including 
Laufer’s, have been compiled in figure 1. Figure 2 presents a compilation of 
turbulence intensity measurements for the velocity component normal to the wall, 
v’. Laufer (1950) discussed the effect of Reynolds number on the inner scaling of 
streamwise turbulence intensity in the range 12200 < Re < 61600. It appeared that 
the peak value of intensity, u’/u,, decreased with increasing Reynolds number owing 
to decreasing resolution of his hot-wire probes. Unfortunately, he was not able to 
determine a length correction for his probes. 

Johansson & Alfredsson (1982) also speculated on a Reynolds number effect on the 
inner scaling of fluctuating quantities. They used hot-film probes in a water channel 
to examine the Reynolds number range, 6900 < Re < 24450. Their u’ data are shown 
in figure 1. A single v‘ profile was reproduced from a later work, Alfredsson & 
Johansson (1984), and appears in figure 2.  Like Laufer (1950), they observed that the 
profiles of u’/u, for different Reynolds numbers did not collapse onto a single curve. 
They left the subject open with an argument that hot wires were inherently unable 
to make accurate measurements deep inside the inner region. 

Comte-Bellot (1965) found no Reynolds-number effect on inner scaling for 
Reynolds numbers from 57000 to 230000. In  that range, she found that even the 
higher-order moments of the streamwise and normal velocities, u and o, scale on 
inner variables out to  yf = 100. 

Eckelmann (1974) reported on hot-film measurements made in an oil channel over 
the Reynolds number range, 2800 < Re < 4100. He showed that both u’/u, and v’lu, 
satisfy inner scaling out to yf = 23. He did not show any data beyond that 
location. His later investigations, Kreplin & Eckelmann (1979), Kastrinakis & 
Eckelmann (1983), and Johnson & Eckelmann (1983), seem to assume a priori an 
inner scaling for all fully developed turbulent channel flows. 

The problem with Eckelmann’s first work, Eckelmann (1974), is that the Reynolds 
number range investigated is very small. The largest Reynolds number is less than 
50% greater than the smallest number. It is not clear that  this range would be 
sufficiently large to  distinguish any but the strongest Reynolds number trends. 

An excellent study, specifically addressing the question of scaling laws in turbulent 
pipe flows, was written by Perry & Abell (1975). They demonstrated that not only 
the mean streamwise velocity, but the streamwise and normal fluctuations, Reynolds 
stress, and power spectra all scale on inner variables in the inner region over the 
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FIGURE 1 .  Streamwise turbulence intensity profiles, non-dimensionalized with respect to inner 
variables, taken from the turbulent channel flow literature : @, Re = 3850 (Kreplin & Eckelmann 
1979); 0 ,  Re = 6900 (Johansson & Alfredssohn 1982); 0 ,  Re = 17300 (Johansson & Alfredssohn 
1982); 0 ,  Re = 24450 (Johansson & Alfredssohn 1982); ., Re = 12300 (Laufer 1950); A, Re = 
30800 (Laufer 1950); V, Re=61600 (Laufer 1950): 0,  Re=57000 (Comte-Bellot 1965); @, 
Re = 230000 (Comte-Bellot 1965). 
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FIGURE 2. Turbulence intensity profiles, v', taken from the turbulent channel flow literature: 0 ,  
Re = 2800 (Eckelmann 1974) ; 0 ,  Re = 4100 (Eckelmann 1974) ; 0,  Re = 7500 (Alfredsson & 
Johansson 1984); ., Re = 12300 (Laufer 1950); A, Re = 30800 (Laufer 1950); V, Re = 61600 
(Laufer 1950) ; 9, Re = 57000 (Comte-Bellot 1965) ; (>, Re = 230000 (Comte-Rellot, 1965) : 
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Reynolds number range, 78000 <Re < 260000. It may be noteworthy that these 
Reynolds numbers are higher than those of all other studies cited above, except for 
Comte-Bellot (1965). Comte-Bellot examined an analogous range in channel flows 
and also found that inner scaling existed. This suggests the existencw of a ‘critical’ 
Reynolds number above which turbulence quantities in thc inner region scale on 
inner variables. The other works cited in this section may have been conducted below 
this ‘critical’ value. 

Head & Bandyopadhyay (1981) performed a smoke visualization study of 
turbulent boundary layers in a wind tunnel. Their investigation covered a Reynolds- 
number range, based on momentum thickness, of 500-17 500. Photographs of the 
inner regions of the boundary layers clearly show increased vortex stretching with 
increasing Reynolds number. At high Reynolds numbcrs, the inner region looks very 
different from the low-Reynolds-number counterpart. Unfortunately, it is very 
difficult to extract quantitative information from flow visualization studies. Head & 
Bandyopadhyay (1981) were not able to  establish whether or not the apparent 
changes in structure scaled on inner variables. 

The existence of Reynolds-number effects on the streamwise fluctuations have 
recently been observed in low-Reynolds-number, zero-pressure-gradient turbulent 
boundary layers by Purtell, Klebanoff & Buckley (1981) and Erm, Smits & Joubert 
(1985). Both groups of investigators made hot-wire measurements in air over 
virtually identical Reynolds-number ranges. Purtell et al. (1981) examined the 
Reynolds-number range, based on momentum thickness 465-5100 ; Erm et al. (1985) 
covered the range, 617-5010. Both sets of data clearly show that u’/u, rapidly 
increases from zero a t  the wall, reaches a maximum value around y+ = 12, and 
decreases back toward zero in the free stream. The u’/u, profiles exhibit a clear 
Reynolds-number dependence for y+ > 12 ; u’/u, decreases less rapidly with 
increasing Reynolds number. Thus, the turbulence intensity peak is broader at 
higher Reynolds numbers. There is evidence in Purtell’s data that the magnitude of 
the intensity peak may increase with Reynolds number as well. Neither study 
speculates on the cause of these effects. 

To date, most investigators of fully developed turbulent channel flows seem to 
have accepted the idea of inner scaling for all Reynolds numbers and focused 
attention on the structure of thc inncr region; much research has centred on the 
existence of hairpin vortices as the fundamental structure in the inner region. 
Consequently, there really has been no verification of the inner scaling of the 
fluctuating quantities. This is more than an academic problem because a great deal 
of the current quantitative work on coherent structures deals with the scaling 
properties of these structures. 

An example of this problem is the disagreement between the conclusions of 
Willmarth & Bogar (1977) and those of Johnson & Eckelmann (1983). Willmarth & 
Bogar (1977) developed very small X-array hot-wire probes to measure small-scale 
structures in the inncr region of a turbulent boundary layer in a wind tunnel. At a 
Reynolds number based on momentum thickness of 11 700, the size of the probes was 
approximately 2.5 viscous lengths. They calibrated their probes by recording the 
signals produced in steady flow for a wide range of probe anglcs of inclination and 
flow speeds. When the probes were placed in the boundary-layer flow, very close to 
the wall, they observed signals which fell well outside the calibration curves. They 
concluded that these signals could only be caused by small-scale shear layers striking 
the probes ; the strong shear layer present in a small intense vortex would cause one 
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wire to sense one velocity vector while the second wire sensed a completely different 
vector. 

Johnson & Eckelmann (1983) attempted to  reproduce the Willmarth & Bogar 
(1977) experiment in an oil channel. They scaled their hot-film probes on inner 
variables to match the Willmarth & Bogar probes. The Reynolds number of the 
Johnson & Eckelmann (1983) flow was 3800 based on centreline velocity and half- 
channel width. They did not detect any irregular signals and concluded that 
vibration of the probes used by Willmarth & Bogar was responsible for signals 
outside the calibration range. Outside of the fact that the flow geometries were 
different, one was a boundary layer and the other was a fully developed channel flow, 
the Reynolds numbers were very different. To make the comparison between the two 
flows, Johnson & Eckelmann (1983) had to  have implicitly assumed that a scaling of 
the inner region existed between the two flows. 

It is believed that the primary reason the inner scaling of channel flows have never 
been adequately demonstrated is the difficulty in making good measurements. 
Recently, a number of studies have shown that the effect of probe size is very 
important in the detection of small-scale inner structures. Johansson & Alfredsson 
(1983), Blackwelder & Haritonidis (1983), and Luchik & Tiederman (1986) have 
found that turbulence intensity measurements made with oversized (relative to the 
smallest significant eddies) hot-film and LDA probes show a lack of resolution. 
Schewe (1983) noted a similar trend with pressure fluctuation measurements using 
surface mounted pressure transducers. 

A probe essentially integrates over the length, area, or volume of the active sensing 
element. That is, the signal from the probe represents the average value over the 
entire sensor. Large-amplitude signals from disturbances much smaller than the 
sensor will be attenuated by the averaging process. Attenuation of these peaks leads 
directly to  measured intensity values which are too small. 

Laufer (1950) observed that the peak value of u'/u, decreased with increasing 
Reynolds number but was not able to determine a length correction for his hot-wire 
probes. His non-dimensional probe length increased from 3 viscous lengths a t  Re = 
12300 to 13 viscous lengths a t  Re = 61600. This fourfold loss in spatial resolution 
probably contributes greatly toward explaining the reduction in the streamwise 
intensity peak. It also suggests the existence of important turbulent structures which 
are smaller than 10 viscous lengths in size. 

A similar trend can be seen in the streamwise intensity peak from Comte-Bellot 
(1965). Although she claimed that her fluctuating profiles scaled with inner variables, 
examination of her data shows a systematic decrease in the peak value of U'IU, from 
a value of approximately 2.85 a t  the Re = 57000, down t o  2.65 at Re = 120000, and 
finally to 2.5 a t  Re = 230000. The highest and lowest Reynolds-number data are 
shown in figure 1. In  the Reynolds-number range examined by Comte-Bellot, the 
dimensionless probe length increased from 13 to 36 viscous lengths. This result was 
not noted by Comte-Bellot. 

1.2. Objectives 
There is clearly a need for a set of high-resolution measurements in the inner region 
of turbulent channel flows for low to moderately high Reynolds numbers. These 
measurements will confirm or deny the existence of inner scaling in that range. The 
feasibility of making such measurements with an LDA was verified by Willmarth & 
Velazquez (1983). Willmarth t Velazquez (1983) constructed a two-component LDA 
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system with a measurement volume which was roughly a cube, 50 pm on a side. They 
made a single run in a turbulent channel flow a t  a Reynolds number of 14700. Their 
initial study was limited because the data rates obtained were too low to reconstruct 
the time dependent velocity signals accurately. 

The first objective of the present investigation is to  test for the existence of an 
inner scaling law for turbulent channel flows in the range, 3000 < Re < 40000. This 
entails acquiring accurate, simultaneous, time dependent records of velocity 
components in the streamwise direction and the direction perpendicular to the wall. 
This will provide measurements of turbulence intensities, Reynolds stress, and power 
spectra to a degree of resolution unattainable with conventional anemometry 
techniques. 

If inner scaling does not hold over this range (i.e. there is a Reynolds-number 
effect), an argument will be made that there is an evolution from low-Iteynolds- 
number fully developed turbulent channel flow to high-Reynolds-number turbulent 
channel flow. A rationale supporting the existence of a Reynolds-number dependent 
evolution begins with the idea that a laminar flow has no Reynolds stress. However, 
a turbulent flow a t  large Reynolds number has a Reynolds-stress profile, the 
maximum value of which, non-dimensionalized on the friction velocity, approaches 
unity. It is not clear that turbulence behaves as a ‘digital’ process whereby the 
normalized Reynolds stress is either zero or unity. It is hypothesized that there must 
be some Reynolds-number range where the turbulence ‘evolves’ to the high 
Reynolds-number turbulence state. The second objective of this investigation is to 
develop insight into this evolutionary process. 

2. Apparatus 
2.1. Water channel facility 

A closed-circuit water channel, consisting of a free-surface reservoir, pump, channel, 
and downstream pressure weir, was built for this investigation. The design was 
patterned on the channel used by Willmarth & Velazquez (1983) and is shown 
schematically in figure 3. A detailed description of the system was written by Wei 
(1987). 

The pump was operated a t  both 1800 and 3600 r.p.m. using two different motors. 
The flow rate through the test section was further regulated a t  the pump exit by a 
bypass circuit with two valves, as illustrated in figure 3. Wherever possible, 10.16 cm 
diameter piping was used throughout the system because its cross-sectional area 
matched that of the test section. 

Flow entered the upstream end of the settling chamber along the centreline of the 
channel test section. Two stainless steel perforated plate screens were placed inside 
the settling chamber to  break up the large eddies generated at the inlet. Before 
entering the test section, the flow passed through a converging plane-walled 
contraction. This eliminated the large counter-rotating vortices, associated with a 
Borda type entrance. The contraction, however, did not completely eliminate 
turbulence at the test-section inlet which aided in establishing a fully developed 
turbulent profile. 

The channel test-section dimensions were 2.572 cm wide, 30.48 cm high, and 
254 cm long. The measuring station was located 222.25 cm downstream of the test- 
section inlet. At the time of assembly, the channel width was made to be constant 
to within 0.25% along its entire length. Similarly, the channel height was constant 
to within 0.04%. To maintain uniform width, six clamps were applied along the 
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FIGURE 3. Schematic diagram of the closed-circuit flow loop 

FIGURE 4. Detailed top- and side-view drawings of the  channel test section. 

centreline of the test section at 30.48 ern intervals, as shown in figure 4. The test- 
section walls were made from two sandwich construction panels consisting of a 
‘Klegecell’ foam core wrapped in 0.159 ern thick stainless steel sheet. There were no 
scratches larger than those left by a light buffing with steel wool. The panels were 
separated by two 2.54 em wide stainless steel spacer bars and bolted together a t  
15.24 em intervals. A schematic assembly drawing of the test section, including 
settling chamber, and exit adaptor, is shown in figure 4. 

The test section was fitted with fifteen manometers, equally spaced a t  15.24 em 
intervals, which aided in monitoring the flow in the channel and determining the wall 
shear stress. The first manometer was placed 198.12 em upstream of the measuring 
station. Each pressure tap was 0.14 em in diameter, drilled into the centreline of the 
upper spacer bar. The manometers were made of precision bored glass tube, with 
outside diameter of 3.81 em and approximate wall thickness of 0.24 em. In this 
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manner it was possible to make mean static pressure measurements which were 
relatively free from the turbulent pressure fluctuations in the channel. 

A 91.44 cm long extension was added to the downstream end of the test, section. 
This addition was necessary to keep the measuring station free of exit conditions. 
Flow passed from the extension into a 10.16 cm diameter pipe via a straight-walled 
exit adaptor. The intent was to make the flow transition from the rectangular test 
section to the circular pipe as smooth as possible. The pipe completed the flow loop 
back to the reservoir. 

A T-connection in the return pipe led to a cylindrical downstream constant head 
tank. For the lower Reynolds-number measurements, the tank was needed to 
establish a sufficiently high pressure in the test section. The tank was 60.96 cm in 
diameter, and 152.4 cm deep. A variable-height weir divided the tank into two parts. 
By blocking the direct line from the test section to  the reservoir, flow was diverted 
into one partition of the tank. Water overflowed the weir into the other partition and 
returned to  the reservoir. 

2.2. Measuring station 
An LDA with four laser beams intersecting at a single point was used to  measure the 
streamwise and perpendicular velocity components in the test section. A detailed 
description of the LDA appears in $2.3. The measuring station, defined as the 
streamwise location of the beam crossing, was located 222.25 cm downstream of the 
test-section inlet. Figure 5 is a top view diagram of the measuring station. 

The beams entered the test section through a 5.08 cm long, 0.635 cm high slot, 
centred about the measuring station. This enabled measurements to be made from 
the channel near wall to slightly past the centreline. The slot was covered with an 
extremely thin window of heat shrink Mylar film which was firmly cemented to the 
plate. The film was 0.00165 cm thick, prior to heat shrinking. The extreme thinness 
of the film virtually eliminated refraction of the beams by the window. A similar 
window was installed in the panel on the opposite side of the test section to allow the 
incident laser beams to exit the channel. This improved the signal-to-noise ratio 
of the LDA measurements by reducing the amount of ambient light in the vicinity 
of the measuring volume. 

To minimize beam refraction in the path between the laser source and the 
measuring station, an ‘optical head ’ was used. It was first devised by Willmarth & 
Velazquez (1983), and is illustrated in figure 5 .  Two glass windows, in the shape of 
sections of a spherical shell approximately 10 cm inner radius, were mounted in a 
triangular brass chamber (the optical head). The optical head was bolted to the 
optical bench and connected to the channel by a flexible rubber diaphragm and filled 
with distilled water. When properly aligned, the laser beams passed without 
refraction through the optical head, perpendicular to the ‘spherical ’ windows, into 
the test section. The scattered light from the measuring volume also passed outward 
without refraction. 

The optical head was also used to balance the pressure exerted on the Mylar film 
by the water in the test section (Le. it prevented deflection of the Mylar film). The 
‘false head ’, also shown in figure 5 ,  was designed to make this pressure balance self 
regulating. The false head was a rectangular box whose projected area, facing the test 
section, matched that of the optical head. It was placed directly opposite the optical 
head. 

The false head was open at one end and divided into two compartments by a 
flexible rubber diaphragm. It was rigidly mounted to a fixed steel frame and attached 
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FIGURE 5. Top-view schematic of the measuring station including: Mylar window, 
optical head and false head. 

to the channel in the same manner as the optical head. A tube connected the optical 
head to one compartment of the false head, and a second tube connected the test 
section (at the bottom, directly below the measuring station) to  the other 
compartment. Manometers were installed to  monitor the pressure in the different 
compartments . 

Distilled water was placed into one compartment of the false head. This was 
divided between the false head and the optical head through the connecting tube. 
The second compartment of the false head was automatically filled with water from 
the test section, via the second connecting tube. Because the test-section water in the 
false head and the distilled water in the false head were separated by a flexible 
membrane, the pressures in both compartments would necessarily balance. In  this 
manner, the pressures in the test section, the optical head, and the false head were 
balanced; there was no net force acting on the Mylar film. In  addition, there was no 
net force pushing or twisting the test section. 

When making measurements a t  different distances from the wall, the test section 
was positioned relative to the laser beams. This was done because the alignment of 
the beams was highly sensitive. To do this the entire settling chamber, test section, 



66 1'. Wei and W .  W .  Willmarth 

exit adaptor assembly was placed on a steel channel beam, as shown in figure 4. The 
upst,ream end of this beam was support,ed by a thrust bearing located underneath the 
settling chamber. The bearing was mounted on a steel platform which was firmly 
bolted to  the laboratory floor. The downstream end of the channel beam was 
suspended from the laboratory ceiling, 53.34 cm downst,ream of the measuring 
stat ion. 

A 'uni-slide' micropositioner was mounted to the false head. Two dial gaugcs were 
bolted to  the optical bench 19.7 cm downstream of the measuring &ation. The gauges 
were placed at, direrent, heights and were used to  verify tha t  the test, section did not 
twist. It was possible to  position the test section relative to  the measuring stat,ion 
with an accuracy of better than 0.00254 cm. 

2 .3 .  Laser Doppler anemometer 

A high-resolution, two-colour, two-component LDA was developed for t)his 
investigation as an improvement over the system used by Willmarth & Velazquez 
(1983). The light source was a Spectra-Physics Model 164-08 argon-ion laser. It was 
generally operated a t  an all-lines output power of 0.6 W. Both the laser and opt,ics 
were rigidly mounted on benches which were bolted to  the laborattory floor. 

To make velocity moasurements, the laser beam was split into two pairs of beams 
which were made t o  intersect at the measuring station. Two green beams, 514.5 nm 
wavelength, were used to  measure the component of velocity 45' away from the wall 
(hereinafter referred to  as  U 2 ) ,  and a pair of blue beams, 488 nm wavelengt,h, 
measured the velocity component 45" toward the wall (hereafter referred to  as U,). 
A schematic diagram showing the paths of the laser beams from the laser t o  the 
measuring station appears in figure 6. The two blue beams entered the channel from 
upstream of the measuring stat,ion at angles of 30" and 60" with respect' tjo t,he 
channel wall. The green bcams enter the channel from downstream of tho measuring 
station also at 30" and 60" to  the channel wall. 

Prior to  entering the channel, the beams passed through the optical head. Mounted 
on the outside o f t h e  optical head were four focusing lenscs, shown in figure 6. The 
lenses had focal lengths of 15.5 cm and were used to  create 50 pm diameter waists in 
each beam at the measuring volume. 

The LDA w a s  operated in the side-scatt>er mode to  improve the spatial resolution 
of'the system. This was done by limiting the area of the measuring volume viewed 
by tJhe receiving optics as explained in the next paragraph. The scattered light from 
each of the blue and green measurement volumes was collected by two acromat 
lenses, mounted immediately outside the optical head. The acromat lenses had focal 
Ienghths of 12 cm and were used t,o create images of the measurement volumes at the 
windows of two RCA-4526 photomultipliers. The magnification fackor of the images 
was six. 

The high spatial resolution of the LDA was obtained through the use of two 
300 pm diameter pinholes, placed in front of the photomultiplier windows. These 
pinholes limit'ed the field of view of the photomultiplier at the measurement volume 
t,o a cylindrical region, 50 pm in diameter. Thus, the active sensing volumes of the 
LDA were roughly spherical in shape with diameters of approximately 50 pm. 

Titanium dioxide in tho rutile crystalline form was used as seed particles for the 
LDA. The mean diameter of the particles was 3 pm. A concentrated solution of 
particles was stored in a bucket above the settling chamber. The solution was 
injected into the settling chamber using gravity feed. 

A small slide mechanism was bolted to  each photomultiplier housing between thc 
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FIGURE 6. Top-view schematic drawing of the laser-beam paths. Note that the beam angles 
and orientations are correct. However, the lengths are not to scale. 

photomultiplier window and the pinhole. The mechanism was fitted with two single- 
line interference filters, centred at  488 nm and 514.5 nm respectively, mounted side- 
by-side in a slide. The filters were used to prevent ambient light from striking the 
photomultiplier detectors and to aid in aligning the LDA. Further details appear in 
Wei (1987). 

Doppler burst detection and processing were accomplished using two Macrodyne 
Model 2096 laser velocimeter digital burst processors. The Macrodyne burst detection 
system includes a multi-level sequence test, a 5 count/8 count comparison test and 
an oversize particle test. For each channel, the photomultiplier signal was pre- 
amplified by two high-frequency Avantak amplifiers (GYD-461 and GPD-462) 
connected in cascade. The signal then passed through a Krohn-Hite Model 3103A 
band-pass filter and into a Macrodyne burst processor. The outputs from the burst 
processors were subjected to a simultaneity check a t  the computer interface prior to 
being stored in permanent files on a Data General NOVA 840 computer. The 
computer was.equipped with a remote terminal in the laboratory as well as a 
terminal in the computer room, a magnetic tape drive, three hard disc drives each 
having two megabyte storage capability, a Calcomp plotter, and a high-speed line 
printer. During data acquisition, the burst signals and analog output signals were 
monitored on oscilloscopes. The data rate was monitored using a Hewlett-Packard 
Model 53348 Universal Counter. 

3. Experimental methods 
3.1. Experimental conditions 

Four different Reynolds numbers were examined in this investigation, spanning the 
range from 3000 to  40000. Depending on the Reynolds number, data records were 
taken a t  fourteen to twenty different y-locations between the channel wall and the 
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channel centreline. A data record consisted of a number of 2048 point data blocks. 
Each data ‘point’ included a burst period corresponding to U,, a burst period 
corresponding to U,, and time since the last data ‘point’. A sufficient number of 
blocks, calculated from equation 1.100 of Lumley & Panofsky (1964) for the accuracy 
of statistical time averages, were taken to ensure accurate long-time averages. 
Details of the calculations appear in Wei (1987). 

3.2. Data acquisition 
For each run, flow in the channel was established and the LDA system was activated. 
The pressure gradient was visually observed using the glass manometers to ensure 
that the turbulent flow along the entire test-section length was fully developed. The 
gradient was also measured for subsequent calculation of the friction velocity. 

The channel test section was positioned so that the measurement volume appeared 
to be in contact with the wall. This was done by moving the channel wall closer and 
closer to the measurement volume until the LDA no longer detected any Doppler 
bursts. This was a satisfactory method of establishing an initial estimate of the wall 
location. The final wall distance measurements, described in the next section, agreed 
with the initial estimates to within 0.0076 cm. The dial gauge reading corresponding 
to y l b  = 0 was recorded, and the channel was positioned to the y-location for the first 
LDA measurements. 

At each y-location, the LDA system was prepared for data acquisition. First, the 
analog output trace from each burst processor was monitored using a dual beam 
oscilloscope while the burst processor threshold control for the multi-sequence 
detection check was varied to obtain the highest possible data rate with a minimum 
of erroneous samples. The mean value of each analog output trace was monitored 
using a strip chart recorder to  obtain an estimate of the local mean velocity, [J .  The 
Krohn-Hite filters were then adjusted to  accept Doppler bursts corresponding to the 
velocity measurements between 0.2 and 1.8 times the local mean velocity in the U, 
or U, direction. The 5 / 8  comparison check in the burst processor was enabled, and 
the range setting on the burst processor was adjusted to  fully utilize the precessors’ 
dynamic range. It should be emphasized that this adjustment process was an 
iterative procedure because there is a significant interaction between the filter 
frequency and the signal quality presented to  the burst processor. After adjustment 
of the burst processors the time window of the simultaneity test a t  the computer 
interface was set so that the time between the measurements of ill and U ,  was 
slightly less than the time required by a seeding particle to traverse the measurement 
volume at  the local mean speed. After the LDA controls were fixed, the seeding 
particles were injected into the test section, and the data record was sent to  the 
computer. 

3.3. Digital signal processing 
Figure 7 shows a representative sample of the simultaneous raw data signals, U ,  and 
U,, from the LDA with successive velocity sample pairs randomly spaced in time. 
The data were taken a t  a Reynolds number of 14914 at a non-dimensional distance 
from the wall of y+ = 46. The average data rate was 4200 samples per second. The 
salient feature of the traces in figure 7 is the temporal resolution of the signals. 

The next step in the data reduction process was to  reproduce the velocity signals 
at evenly spaced time intervals. The time intervals between reproduced signal points 
were equal to the average time between data points in the raw signal for that record. 
The velocities corresponding to each evenly spaced timestep were calculated by 
linear interpolation between adjacent points in the raw velocity signals. 
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FIGURE 7. Raw time-dependent velocity traces of U, and U,. Data occur in the figure 
at random time intervals at an average rate of 4200 samples per second. 

These reproduced velocity signals were then filtered and smoothed using a digital 
Gaussian filter, the third step in the data reduction procedure. The convolution 
equation for the digital filter was 

Ufiltered(tm) = {xuunfiltered(tn) H ( t m  - t n ) } / { x  H ( t m  - tn)} .  ( 1 )  

H(t , - t , )  = exp[-a2(tm-tn)2]. (2) 

The digital filter function, H(t , - t , ) ,  is defined by 

The constant, a, in the above equation was chosen so that the half-power frequency 
of the filter function was equal to the viscous angular frequency, w = 2xu,2/v, of the 
channel flow under investigation. 

An example of the reproduction/filtering/smoothing process, as applied to the 
signals in figure 7, is shown in figure 8. It should be noted that the constant, a,  for 
the filter function used in generating figure 8 was chosen so that the half-power 
frequency of the filter function was one-sixth of the viscous angular frequency. This 
was done to  better illustrate the effects of the digital filter. A discussion of the 
frequency response of the digital filter is presented in Wei (1987). 

The reproduced/filtered/smoothed U, and U ,  signals were then used to  generate 
the time dependent U and Ti velocity traces. Representative samples of these traces 
are shown in figure 9. These traces were generated from figure 8 by taking the vector 
sum of U, and U, to generate U ,  and calculating the vector difference to obtain V. 
Since the velocity signals were at evenly spaced time intervals, long-time averages 
could be calculated using ensemble averaging techniques. It was also possible to use 
these signals to calculate power spectra of the turbulent velocity fluctuations. 

The final step in the data reduction procedure was to generate time-dependent 
Reynolds-stress signals. A representative trace appears in figure 10 created from the 
traces shown in figure 9. Accurate reconstruction of Reynolds stress traces was 
possible because of the large signal to noise ratios of the U and V signals. 
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FIGURE 8. Reproduced/filtered/smoothed U, and U ,  velocity traces from the da ta  shown in figure 7. 
Kote that  the data  are now at even time intervals, and much of the  noise has been eliminated. 
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FIGURE 9. Time-dependent U and V velocity traces generated from the data  shown in figure 8. 
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FIGURE 10. Time-dependent Reynolds-stress trace of the data appearing in figure 9. 

3.4. Temporal resolution and data rates 
One of the principal design criteria of the LDA system was that the data rates had 
to be sufficiently high to accurately reconstruct the time-dependent velocity signals. 
As explained in this section, the data rates for the lowest three Reynolds numbers 
were high enough to enable accurate reconstruction of the velocity signals. However, 
a t  the highest Reynolds number, Re = 39582, even the data rate from the LDA was 
not sufficient to allow accurate reconstruction of the velocity traces. 

Before proceeding, it is important to  clarify what is meant by ‘sufficiently high’ 
data rates. I n  an ideal LDA, assuming uniform distribution of the seeding particles 
and very low-amplitude velocity fluctuations, the average data rate increases 
linearly with velocity, as shown in figure 11. As the speed increases, a proportionally 
larger number of seeding particles are swept through the measurement volume. For 
proper operation with a digital burst processor only one particle should be in the 
LDA measuring volume at any given time. If there is more than one particle in the 
measuring volume the burst processor will ordinarily detect the faulty burst and will 
reset without producing a burst period measurement for any of the particles in the 
measurement volume. Occasionally, the burst processor detection tests will fail and 
multiple bursts will combine to  give an erroneous velocity measurement. In any case, 
the maximum allowable seeding particle density occurs when the ‘next’ particle is 
entering the measuring volume as the ‘previous’ particle is leaving. The maximum 
possible data rate is then given by the approximate relation : 

(3) 

This maximum possible data rate is shown in figure 11 as a function of local mean 
velocity for the 50 pm measuring volume used in this study. 

Near the channel centreline, the local mean velocity is large, implying very high 
data rates. However, the intensity of the incident light is greatly reduced by 
scattering from the seed particles encountered in the fluid between the channel wall 
and the measuring volume. If the seeding particle density is high, the intensity of the 

Maximum data rate = Local mean velocity +Probe dimension. 
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FIGURE 11.  Maximum possible data rate for an ideal LDA with a 50 pm measuring volume. 

light scattered from seed particles in the measuring volume is low so that the signal- 
to-noise ratio of the photomultiplier signal is reduced and the data rate will be 
adversely affected. As the measuring volume is moved closer to the wall, the degree 
of attentation of the incident light decreases because there is less seeded fluid 
between the channel wall and the measuring volume. There will be a range of y- 
locations where the flow velocities are large and the attenuation of light is small, 
resulting in larger signal-to-noise ratios and high data rates from the LDA. 

Near the wall, a number of factors contribute to  a Significant reduction in the LDA 
data rate. First, the low mean streamwise velocities reduce the rate at which seeding 
particles are convected through the measurement volume. Secondly, the signal-to- 
noise ratio of the LDA photomultiplier signal is reduced by extraneous light 
scattered from the wall into the optical path leading to the photomultiplier. 
Additional reductions in data rate are caused by increases in both the intermittency 
and the magnitude of the velocity fluctuations relative to  the mean velocity near the 
wall; the larger fluctuations reduce the data rate because of the LDA requirement 
that instantaneous U, and U, velocity measurements be between 0.2 and 1.8 times the 
component of the local mean velocity in the U, or U, direction. This criterion is 
described in $3.2.  

Finally, a further reduction in data rate near the wall results from the fact that the 
magnitude of the transverse fluctuations relative to  the mean velocity increases. 
There is then a higher probability of spanwise convection of a seed particlc out of the 
measurement volume before eight fringes are crossed. Because of the simultaneity 
requirement imposed on the U, and U, measurements, if either one or both velocity 
measurements are lost from spanwise convection, the burst processor will reject the 
measurements; the data rate is reduced. A quantitative assessment of these 
additional contributions to  the reduction in data rate near the wall has not been 
done. However, figure 12 clearly indicates that a significant reduction in data rate 
occurs near the wall. 

The maximum data rates obtained a t  each y-location for all four Reynolds 
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FIGURE 12. Data rate profiles, non-dimensionalized on inner variables, for the four Reynolds- 
number flows. The lines show the maximum possible data rates in an ideally seeded flow as a 
function of local mean velocity for the four Reynolds numbers of this investigation. The plotter 
symbols represent the following data: 0, Re = 2970; 0,  Re = 14914; A, Re = 22776; V, Re = 
39582. Note that the data rates are plotted versus u+ rather than y+. 

Inverse timescale Maximum Viscous length 
(u,2/4 data rate (VIU,) Probe dimension 

Re (5-l) (samples/s) (cm) in viscous lengths 

2970 190 1400 0.0076 0.66 
14914 3360 4200 0.0018 2.76 
22776 5730 6300 0.0013 3.94 
39 580 1 1  790 5400 0.0008 6.43 

TABLE 1 .  Significant flow parameters for the four Reynolds-number runs 

numbers appear in figure 12. These rates were non-dimensionalized with respect to 
the corresponding viscous frequencies. The maximum data rate for each profile is also 
presented in table 1 along with the viscous frequencies, and spatial resolution. 
Observe that the ordinate of figure 12 is the local mean (streamwise) velocity, non- 
dimensionalized by the friction velocity. This is analogous to plotting versus y + .  

It may be seen from figure 12 that the highest data rates for the lower three 
Reynolds numbers were obtained in the range N 10 < u+ < - 20 ( - 10 < y+ < - 250). 
For the lowest Reynolds number, the maximum data rate (for U+ = 16 ; y+ = 92) is over 
seven times greater than the viscous frequency. For the two intermediate Reynolds 
numbers, the maximum data rate is approximately equal to the viscous frequency, 
and the maximum data rate in the high Reynolds number case is less than half the 
viscous frequency. 
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The data rates for the three lowest Reynolds-number rneasuremcnts in the range, - 10 < y+ Q - 250, were large enough to reconstruct the time-dependent velocity 
signals. Justification of this statement) requires that one look ahead to the power 
spectra of the ti,, v, and Reynolds-stress signals presented in figures 20, and 22-26. 
The non-dimensional ordinate, Y ( w + ) ,  in each of these figures is defined in (10). The 
abscissa, log[o+], is the logarithm (to the base 10) of angular frequency, non- 
dimensionalized by the viscous frequency. In these semi-log coordinates, the area 
under each of the spectra is proportional to  the power in the velocity or Rcynolds- 
stress fluctuations. 

In order to determine accurately the contribution to the power spectrum of a 
random signal from a digital sample of the signal the sampling rate, must be at least 
twice as great as the highest frequency component which contains significant power. 
If the sampling rate is below this sampling rate the power spectrum will be ‘aliased ’; 
with the contributions to the total power from high-frequency components arbificially 
‘folded’ back to appear at lower frequencies. The average LDA dat$e rate must 
therefore be high enough to prevent significant aliasing of the power spectrum. This 
will ensure that the digital LDA signal for the fluctuating velocity components 
contains all the ‘energetically ’ significant velocity fluctuation information. 

The lowest non-dimensional, average data rate for the various power spectra in 
figures 20 to 26 was w+ = 3.75 for the measurements a t  y+ = 15.9 and a Reynolds 
number of 22776 (see figure 12 for this data rate). For this case i t  can be observed 
in figures 20, 22 and 23 that there is very little power in the spectra of u, v ,  and 
uv above a frequency of half this average non-dimensional data rate for which 
w+ = 3.75 x a = 1.875 and therefore log(w+) = log (1.875) = 0.273. This shows that 
the average LDA data rate for the measurement,s a t  y+ = 15.9 and a Reynolds number 
of 22776 was sufficient to determine accurately the power spectra of the fluctuating 
velocity components without aliasing. As mentioned above, the average non- 
dimensional data rate for all the other spectral measurements was higher than the 
data rate for the measurements just discussed and from the plots of these spcctra it 
can be observed that the amount of power in the spectra above the frequency 
corresponding to  half thcse higher average non-dimensional data rates is ncgligible. 
From this, it is concluded that the reconstructed velocity traces for the three lowest 
Reynolds numbers were accurate representations of the actual velocity signals and 
the power spectra of figures 20-26 are valid because there is a negligible amount of 
power in the spectra a t  frequencies greater than half the average LDA data rate. 

For the measurements at the highest Reynolds number, Re = 39580, the non- 
dimensional half data rate was w+ = 0.05, log (w’) = - 1.3, at y+ = 15 and w+ = 0.2, 
log ( o + )  = -0.7, a t  y+ = 130. These average data rates arc too low to avoid aliasing 
of the power spectrum and therefore too low to allow accurate reconstruct,ion of the 
velocity component fluctuations. However, the individual LDA measurements of the 
velocity for the highest Reynolds-number measurements are correct, but, the location 
of the seed particle in terms of non-dimensional distance from the wall is more 
uncertain than for the lower Reynolds-number measurements. The data rates are so 
low that it is simply not possible to reconstruct the time-dependent velocity traces 
or to determine the power spectra of the fluctuations. It is still possible, however, to 
calculate accurate time averages of the velocity signals by employing a weighted 
averaging scheme. 

Such a scheme, the velocity bias correction method, was devised by McLaughlin 
& Tiderman (1973). The necessity for a correction arises because, assuming uniform 
seeding of the flow, the LDA data rate increases during high-speed (positive) velocity 
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fluctuations, and decreases during low-speed (negative) fluctuations. This results in 
more high-speed measurements than low-speed measurements. An ensemble average 
of these measurements produces a mean value which is biased high. To eliminate this 
bias, each individual velocity measurement is weighted by the inverse of the 
instantaneous velocity vector. This is discussed in greater detail by McLaughlin 
& Tiederman (1973) and by Wei (1987). The important point to  note is that this 
correction is independent of the seeding density. As long as the flow is uniformly 
seeded, the velocity bias correction will provide correct time averages of the 
fluctuating quantities. 

Resolution of a viscous timesca,le should not be equated with resolution of a 
viscous length scale. The small, intense shear layers observed by Willmarth & Bogar 
(1977) were less than 2.5 viscous lengthscales in size. Similar phenomena were 
observed by Willmarth and Sharma (1984) using even smaller hot-wire probes. 
However, the duration of the corresponding fluctuations in the hot-wire signal 
traces, shown in Willmarth & Sharma (1984), were on the order of ten viscous 
timescales. 

As a closing note to this discussion of resolution, note that the straight lines 
appearing in figure 12 show the maximum possible data rate, non-dimensionalized on 
inner variables for each Reynolds number. That is, figure 11 has been reproduced in 
non-dimensional form for each of the four flow speeds. Comparison of the maximum 
possible data rates with the actual data rates shows that it should be possible, in 
principle, to significantly improve the performance of the LDA measurement system. 

4. Results 
Non-dimensional mean velocity profiles, U’ us. y+, for four different Reynolds 

numbers are presented in figure 13. The solid line passing through the data represents 
the ‘law of the wall ’ based on averages compiled by Coles (1953) for zero-pressure- 
gradient boundary layers. All the mean velocity profiles were fitted to this line by 
adjusting u, and the wall location so that the experimental values of U/u, and y+ 
agreed with the ‘law of the well’. Fitting the data to the ‘law of the wall’ provided 
a means of verifying the values of u, calculated from the pressure gradient. In  the 
three highest Reynolds-number cases, the values of u, determined by fitting the 
centreline data to the ‘law of the wall’ agreed with the pressure gradient 
measurement of u, to within 6 %. In the lowest Reynolds number case, R e  = 2970, the 
total pressure drop along the entire length of the channel was approximately 
0.254 cm. I n  this case the pressure gradient was too small to  be accurately measured 
with the instrumentation developed and available for this investigation. At the lowest 
Reynolds number, the only reliable way to determine u, was by fitting the data to  
the ‘law of the wall ’ profile compiled by Coles (1953). 

Fitting the data to the ‘law of the wall’ also provided an accurate method of 
independently verifying the wall location. During each experimental run, the 
approximate wall location was found by moving the channel until the Mylar window 
intersected the measuring volume. When the LDA signal disappeared, it was 
assumed that the wall had been found. Once the mean velocity data far from the wall 
were fitted to the solid line (i.e. by adjusting u,), the data very near the wall were 
fitted by varying the origin of the y-coordinate representing the wall location. This 
could be done without appreciably changing the data farther from the wall. In  all four 
cases, the required adjustment of the origin was less then 0.0076 cm or 1.5 times the 
LDA measurement volume diameter. 
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FIGURE 13. Mean velocity profiles, non-dimensionalized on inner variables, for the four Reynolds 
numbers examined. 0, Re = 2970; 0, Re = 14914; A, Re = 22776; V, Re = 39582. The solid line 
through the data is the ‘law of the wall’ plot compiled by Coles (1953) for a zero-pressure-gradient 
turbulent boundary layer. 

The ‘law of the wall’ also provides a control against which the present data could 
be compared. It is important to observe here that the measured mean velocity 
profiles scale with inner variables and are consistent with previous investigations. 
Significant deviations from the solid line would have indicated the presence of non- 
uniformity in the mean flow field in the channel. 

The turbulence intensity measurements are shown in figures 14 and 15. In figure 
14, the u’ and v’ profiles are non-dimensionalized with respect to the local average 
streamwise velocity, U, and plotted against y+. Non-dimensionalization by the local 
streamwise velocity describes the intensity of the turbulent fluctuations relative to 
the square root of the mean kinetic energy per unit mass at a given distance from the 
wall. Note that the v’/U measurements approaching the wall exhibit an apparent 
increasing trend for all four Reynolds numbers. This is not possible because from the 
continuity equation, av/ay = 0, a t  the wall. It is believed that this inconsistency is 
caused by reduced measurement resolution very close to the wall. A more complete 
discussion of the measurement uncertainties is presented in Wei (1987). 

The uf and v1 turbulence intensity profiles were also scaled on inner variables and 
appear in figure 15. For comparison with relevant data from the literature, the reader 
is referred to figures 1 and 2. There is good agreement between the present data and 
that of Eckelmann (1974), Johansson & Alfredsson (1982)’ and Laufer (1950). The 
measured maximum values of u’/u, agree with the data in the literature to within 
5%. There is noticeably less agreement a t  the higher two Reynolds numbers. The 
maximum values in Laufer’s (1950) highest Reynolds-number data, Re = 61 600, 
differ from the present measurements by more than 25%. As discussed in $1.1 ,  this 
is probably due to the decreased spatial resolution of the hot-wire probes used by 
Laufer (1950), and also by Comte-Bellot (1965) and Johansson &, Alfredsson (1982). 
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FIGURE 14. Profiles of the turbulence intensity in the stream direction, u' (open points), and the 
direction normal to the wall, D' (solid points), non-dimensionalized on the local mean velocity. 0,  
Re = 2970; 0 ,  Re = 14914; A, Re = 22776; V, Re = 39582. This figure illustrates a possible 
Reynolds-number effect and resolution problems close to the wall. 
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FIGURE 15. Streamwise and normal turbulence intensity profiles, non-dimensionalized on inner 
variables, for all four Reynolds-number flows. 0, Re = 2970; 0,  Re = 14914; A, Re = 22776; V, 
Re = 39582. The open symbols represent the streamwise measurements, u', and the solid symbols 
represent the component normal to the wall, w'. 
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FIGURE 16. Reynolds stress profiles for all four Reynolds-number flows. 0 ,  Re = 2970; 0, Re = 
14914; A, Re = 22776; v, Re = 39582. The solid line represents the total shear stress profile. 

The Reynolds-stress measurements, normalized with the friction velocity and 
plotted versus y/b, are shown in figure 16. These measurements will be referred to as 
the 'direct Reynolds-stress measurements. They were obtained by averaging the 
product of the measured u and v velocity fluctuations. Data from the literature are 
shown in figure 17 for comparison. The advantages of using a high-resolution LDA 
arc again evident from the fact that  the only previous Reynolds-stress measurements 
very close to  the wall, where the Reynolds stress is decreasing, were made with hot- 
film probes by Eckelmann (1974) at very low Reynolds number. 

It is worth noting that the maxima of the non-dimensional Reynolds-stress profiles 
increase in magnitude and are closer to the wall as the Reynolds number increases. 
Since the maximum value of the non-dimensional Reynolds stress is not the same for 
each profile, the Reynolds-stress profiles do not scale with inner variables in the 
Reynolds-number range investigated. This may be seen more clearly in figure 18, 
where the 'direct ' non-dimensional Reynolds-stress profiles are plotted as functions 

The solid lines in figure 18 are the normalized Reynolds-stress profiles calculated 
from the momentum balance equation using measurements of the pressure gradient 
and the mean velocity profiles. These solid-line profiles will hereinafter be referred 
to as the ' momentum balance ' Reynolds-stress measurements. This independent 
measurement of the Reynolds stress using the momentum equation provides a good 
test of the accuracy of the direct Reynolds-stress measurements and a further, 
independent check that the reconstructed velocity traces used for the direct 
Reynolds-stress measurements were valid. 

The equation for the momentum balance determination of the Reynolds stress is 
obtained from the mean momentum equation : 

of y+. 
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FIGURE 17. Reynolds-stress profiles reproduced from the turbulent channel flow literature : Q , 
Re = 2800 (Eckelmann 1974); 0 ,  Re = 4100 (Eckelmann 1974); 0 ,  Re = 7500 (Alfredsson & 
Johansson 1984) ; O m ,  Re = 12600 (Kastrinakis & Eckelmann 1983) ; 0 ,  Re = 57000 (Comte-Bellot 
1965); (>, Re = 230000 (Comte-Bellot 1965). 
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FIGURE 18. Reynolds-stress profiles, non-dimensionalized on inner variables, for the four Reynolds- 
number flows. 0, Re = 2970; 0, Re = 14914; A, Re = 22776; V, Re = 39582. The open symbols 
represent the directly measured values and the solid lines represent the momentum balance 
calculations. 
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For a fully developed, two-dimensional turbulent channel flow, there are no mean 
velocity or Reynolds stress variations in the x- or z-directions, the flow is not  
accelerating, and V = W = 0. The pressure varies only in the x-direction. Upon 
substitution, (let the subscripts 1, 2, and 3 correspond to  the x,y, and z-directions, 
respectively), the x-momentum equation is : 

Since dP/dx is a constant in a fully developed turbulent channel flow, this equation 
may be integrated once with respect to y. Application of the boundary conditions 
(i.e. at the centre of the channel, y = b, both the Reynolds stress and dU/dy are zero) 
yields : 

At the wall, y = 0, there is no Reynolds stress and the wall shear stress determined 
from the above equation is: 

(7) 

After introducing this relation and writing the equation in non-dimensional form, the 
streamwise momentum equation yields the following equation for the Reynolds 
stress : 

~ ( u w )  = (b-y) dP/dx+p(dU/dy). (6) 

pu(dU/dy), = PU; = - b(dP/dx). 

-(uw)/u," = {l-(y/b)}-dU+/dy+. (8) 

Equation (8) was used to generate the Reynolds-stress profiles shown as solid lines 
in figure 18. The friction velocity was determined from (7) using the measured 
pressure gradient, and dU/dy was determined from a second-order polynomial fitted 
through seven points of the mean profile, centred a t  the y-location in question. The 
polynomial was then differentiated a t  the central point. This process was repeated 
along the entire velocity profile. Since there were insufficient data to  obtain accurate 
near-wall derivatives for the higher two Reynolds numbers, the non-dimensional 
velocity profile compiled and tabulated by Coles (1953) was used. I n  the two lower 
Reynolds-number cases, the agreement between the direct and the momentum 
balance Reynolds-stress measurements is better than 10% except for the data at 
small y+. This is probably due to spatial and temporal resolution problems in the 
direct LDA measurement very close to the wall. At the next highest Reynolds 
number, Re = 22776, the directly measured values fall off sharply from the 
momentum balance Reynolds-stress curve for yf less than approximately 70. The 
directly measured Reynolds-stress value a t  y+ = 10.3 is nearly 60% lower than the 
momentum balance calculated value. This indicates that the resolution limitations 
of the LDA were affecting a significant portion of the inner region. 

When the data rate is lower than that necessary to properly reconstruct the 
fluctuating velocity the statistical properties will be in error. It was possible to  
calculate the long-time statistics using the velocity bias correction techniques, 
developed by McLaughlin & Tiederman (1973), for the ensemble averages of the 
original measured velocities (see $3.4). This was done for all four Reynolds numbers. 
The results for the ensemble averages of the original data with velocity bias 
correction were compared with the ensemble averages from the reproduced/fil- 
tered/smoothed velocity signals. In  the three lower Reynolds-number flows, the 
agreement between the two different methods for the local mean stream velocity, U ,  
was better than 2%. Agreement for the mean Reynolds stress and all of the root- 
mean-square statistics was better than 5%, except near the wall. For the highest 
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FIGURE 19. Turbulent kinetic energy production profiles including direct measurements (open 
points) and momentum balance calculations (solid lines). 0,  Re = 2970; 0,  Re = 14914; A, Re = 
22 776 ; V, Re = 39 582. 

Reynolds number, the magnitudes of mean Reynolds stress and the second moments, 
calculated using the two different averaging methods, differed by as much as 15%. 
The calculations of U differed by 3 %. Thus, a t  the highest Reynolds number, results 
obtained using the original data with the velocity bias correction were used. This 
applies to all of the high-Reynolds-number data presented in this paper. 

The turbulent kinetic energy production profiles were calculated from the 
Reynolds stress and dU/dy measurements. They are shown in figure 19, non- 
dimensionalized on inner variables. The plot symbols were generated by multiplying 
the direct Reynolds stress measurements by dU/dy. The solid lines were generated 
by multiplying the momentum balance Reynolds-stress values by dU/dy. 

The agreement between the directly measured production values and the values 
obtained using the momentum balance Reynolds-stress measurements for the two 
lower Reynolds numbers is generally within 10 %. However, like the Reynolds-stress 
measurements, the directly measured data diverge from the solid lines near the wall. 
As stated above, this is believed to  be related to  the inadequate resolution of the 
LDA very close to the wall. 

5.  Discussion 
The results of this investigation indicate that the fluctuating quantities in the 

inner region of a turbulent channel flow do not scale with inner variables between the 
Reynolds numbers of 2970 and 39580. This is readily apparent from the turbulence 
intensity profiles appearing in figure 15. It can be seen that u'/u7 scales on inner 
variables only up to yf = 12 which is well inside the inner region. The d / u ,  profiles 
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do not scale on inner variables anywhere in the channel. In general, in the Reynolds- 
number range of this investigation, the turbulent fluctuations, non-dimcnsionalized 
on inner variables, become larger in amplitude with increasing Reynolds number. 

Figures 18 and 19 show that the Reynolds-stress and kinetic-energy-production 
profiles also do not scale on inner variables. The Reynolds-stress profiles, shown in 
figure 18, become broader with increasing Reynolds number. This stems from the 
fact that, in terms of viscous lengths, the channel centreline is farther away from the 
wall at higher Reynolds numbers. Since the mean Reynolds stress in a channel flow 
is zero only a t  the channel walls and the centreline, necessarily the Reynolds stress 
profile, when plotted against y+, becomes broader. 

Of greater physical significance is the fact that  the maximum normalized 
Reynolds-stress values increase with Reynolds number. At low Reynolds numbers, 
the flow is laminar, and there is no Reynolds stress anywhere in the channel. As the 
Reynolds number increases, transition from laminar to  turbulent flow occurs. 
Randomly oriented vorticity appears in the flow, giving rise to  Reynolds stresses. At 
Re = 2970, the maximum value of the - (uv)/u; profile is 0.66, while the maximum 
value of - (uv)/u," is approximately 0.90 in the highest Reynolds-number profile, 
Re = 39582. As the Reynolds number increases, it is believed that the maximum 
values of the normalized Reynolds-stress profiles will continue to increase. The 
limiting case, as the Reynolds number approaches infinity, is that - (uv)/u: cannot 
exceed unity ; a mean normalized Reynolds-stress value greater than unity in a fully 
developed turbulent channel flow would violate the conservation of momentum. 

The kinetic-energy-production profiles also appear to  demonstrate a Reynolds- 
number effect. For the three lower Reynolds numbers, the maximum values of the 
momentum balance calculated profiles, shown as solid lines in figure 19, appear to 
increase in magnitude with increasing Reynolds number. At the highest Reynolds 
number, i t  was not possible to  obtain data close enough to  the wall to  resolve the 
maximum value of the production. A stronger statement regarding the Reynolds- 
number dependence of the production profiles requires a larger number of data points 
in the range, 5 < y+ < 30, to better resolve the maxima. 

It is hypothesized that these Reynolds-number dependences are caused by changes 
in the coherent structure of the turbulence close to the wall. Examination of the 
time-dependent velocity signals led to the conclusion that there are two phenomena 
which are responsible for the observed Reynolds-number effects. The first 
phenomenon is the enhancement of the vortex-stretching mechanism in the inner 
region with increasing Reynolds number. The second effect is the interaction of the 
inner region structure from opposing walls, particularly at low Reynolds number. 
These two phenomena will be discussed in $5.2 and $ 5.3, respectively. 

5.1. The coherent structure in the inner region 
It has been proposed that the inner region is comprised of an array of hairpin vortices 
aligned in the stream direction. Use of the hairpin vortex model in this paper is 
supported by the following experimental measurements and observations of 
turbulent wall-bounded flows. The hairpin model was first hypothesized by 
Theodorsen (1955). A decade later, Tu & Willmarth (1966) found that the hairpin 
vortices were useful in explaining hot-wire and pressure transducer measurements 
made in a zero-pressure-gradient turbulent boundary layer. 

Around this time, visual investigations using hydrogen-bubble flow-visualization 
techniques were initiated by Hama & Nutant (1963). They observed that transition 
to turbulent flow began with the production of a hairpin-shaped vortical structure 
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which emerged from the region near the wall and rapidly evolved, ultimately 
resulting in a random chaotic motion. The success of this initial visual observation 
led to further studies in fully-developed turbulent flow including that of Kline et al. 
(1967). 

Kline et al. (1967) used the hydrogen-bubble flow-visualization technique in a free- 
surface water channel. They found that a randomly occurring process, now known as 
the turbulent burst, was the dominant flow process in the turbulent boundary layer. 
They hypothesized that this process involved a hairpin-vortex structure and showed 
that most of the Reynolds stress is produced during this bursting process. 

As mentioned in $1.1, Head & Bandyopadhyay (1981) observed coherent 
rotational fluid in the near-wall region of very high Reynolds-number boundary 
layers. These structures were observed using smoke visualization in a wind tunnel. 
Head & Bandyopadhyay (1981) concluded that the structures were hairpin vortices 
and observed that the number of hairpin structures increased with increasing 
Reynolds number. 

The concept of a hairpin vortex was incorporated into the work of Perry & Chong 
(1982). They used a A-shaped vortex model to describe the coherent turbulent 
structure in the inner region of a zero-pressure-gradient boundary layer. Their 
analysis provided a reasonably accurate prediction of the mean turbulence 
quantities. Further, they demonstrated that the mean velocity profile may be 
satisfactorily described by an hierarchical array of these vortices. This hierarchy was 
qualitatively similar in appearance to  the visualization study of Head & 
Bandyopadhyay (1981). 

Numerical investigations of the near-wall structure of fully developed turbulent 
channel flows also indicate the existence of a hairpin vortical structure in the inner 
region. Moin & Kim (1985) conditionally sampled the instantaneous vorticity fields 
generated using numerical methods in the near-wall region of a low-Reynolds- 
number turbulent channel flow. They found that the isovorticity lines tended to 
coalesce into horseshoe-shaped patterns. They drew the same conclusion, that the 
inner region was dominated by hairpin (or horseshoe) vortices. 

5.2 .  The effect of increased vortex stretching 
To gain further insight into the inner region turbulence structure, it is important 
to consider the vorticity field. This field is mathematically described by the vorticity 
equation. Conventional thought holds that the inner region should scale only on inner 
variables. The vorticity equation should then be non-dimensionalized on inner 
variables. However, in so doing, the non-dimensional vorticity equation will exhibit 
no Reynolds-number dependence. It has already been demonstrated that the inner 
region of a turbulent channel flow exhibits a Reynolds-number dependence over the 
Reynolds-number range of this investigation. Since the Reynolds number is a 
dimensionless grouping of outer variables, failure of the turbulence quantities in the 
inner region to scale only on inner variables is an indication that the dynamics of the 
inner region structure are affected by outer as well as inner variables. Therefore, i t  
is reasonable to examine the inner region dynamics using the velocity equation, non- 
dimensionalized on outer variables : 

DSd*/Dt* = (O*.V*) u*+Re-1(V*20*), (9) 

where O represents vorticity and the asterisk superscript denotes a quantity made 
dimensionless using outer variables, b and Ucentreline. Equation (9) states that the 
total rate of change of vorticity following a fluid particle is due to  the combincd effects 
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of vortex stretching or compression and viscous diffusion. Observe that the 
coefficient of the diffusion term is inversely proportional to the Reynolds number and 
is the only term in the equation that explicity depends on Reynolds number. 

Although the Reynolds number appcars in the denominator of the diffusion term 
of (9) one cannot neglect the diffusion of vorticity in the vicinity of solid boundaries 
in a turbulent flow. Lighthill (1963) points out that  a t  high Reynolds numbers, fluid 
motions in a whole range of scales become unstable. This implies t h a t  in turbulcnt 
flow, motions of smaller scale can extract energy from motions of larger scale. Near 
the wall this cascade process has the effect of bringing the turbulent vorticity 
fluctuations in closer contact with the wall, while the vortex lines are more and more 
stretched. Ultimately, the fluctuating vorticity reaches a region near the wall where 
the gradients have become so intense that the diffusion of vorticity counteracts the 
effect of further stretching. Lighthill (1963) further points out that the wall is also a 
source of new vorticity which is generated by mean of fluctuating pressure gradients. 
Thus, the diffusion term is of great importance a t  all Reynolds numbers in a 
turbulent flow near solid boundaries. 

It is believed that the Reynolds-number effects demonstrated in this investigation 
arise because, as Reynolds number increases, the inner-region vorticity field is 
stretched to a degree greatcr than that dictated by inner scaling laws. This implies 
a natural evolution from low-Reynolds-number turbulence to high-Reynolds-number 
turbulence. In terms of the hairpin vortex model, the legs of the hairpins are 
increasingly stretched a t  higher Reynolds numbers which results in smaller diameter 
vortex cores with greater vorticity concentrated in the cores. It is suggested that the 
turbulent flow structure at high Reynolds number near solid boundaries (i.e the 
hairpin-vortex structure and interactions) will differ significantly from lower- 
Reynolds-number turbulent-flow structure ; therc is a natural evolution of the 
structure of wall-dominated turbulence from low Reynolds number to high Reynolds 
number. 

One way to test this hypothesis is to  examine the power spectra of the fluctuating 
velocity signals a t  different Reynolds numbers. Smaller hairpin vortices with greater 
vorticity in the cores should appear in the velocity signals as larger-amplitude 
fluctuations of shorter period which contribute to the high-frequency range of the 
power spectrum. Recall that  the area under the power-spectrum of a fluctuating 
velocity signal is proportional to the mean kinetic energy of that velocity component. 
Thus the power spectra of the fluctuating velocity signals, non-dimensionalized with 
respect to inner variables, should then exhibit greater 'energy' content a t  high 
frequencies with increasing Reynolds number. 

This effect of Reynolds number on the stretching of vorticity in the inner region 
is apparent in the power spectra of the velocity and Reynolds-stress fluctuations for 
the three lower Reynolds-number flows in the vicinity of the kinetic energy 
production peak (10 2 y+ < 5) ,  shown in figures 20-23. The spectra of the normalized 
velocity and Reynolds-stress fluctuations are presented in the format used by Perry 
& Abell (1975) in their paper on scaling laws for pipe-flow turbulence. The ordinate 
of the spectra, ul(w+),  is defined so that the area beneath a semi-logarithmic plot of 
the spectra, as displayed in figures 20, and 22-26, is the mean-square of the velocity 
of the Reynolds-stress fluctuations divided by friction velocity to the second or 
fourth power (for the velocity and Reynolds-stress spectra, respectively). The 
relation between Y ( w + )  and the power spectral density of the velocity or Reynolds- 
stress fluctuations, @(w+) ,  is: 

Y ( w + )  = w+@(w+)/v .  (10) 
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FIGURE 20. Power spectra of the streamwise velocity signals near y+ = 15 for the three lower 
Reynolds-number flows. 0,  Re = 2970; 0, Re = 14914; A, Re = 22776. Y is the product of the 
angular frequency and the power spectrum, non-dimensionalized on inner variables (see text) ; o+ 
is the non-dimensional angular frequency. 

1 

Y (u-signal) 

0.1 

0.01 

0.001 I I I 1 

0.01 0.1 1 10 

FIGURE 21. The same streamwise power spectra as those presented in figure 20. In this figure, 
the spectra are plotted on a log-log scale. 

u+ 

In (LO), W+ = wv/u," is the radian frequency scaled with inner variables. A subscript 
u, v, or uv, is used in figures 2&26 for the power spectra of these fluctuating 
quantities. 

Power spectra taken in the near-wall region, around y+ = 15, appear in figures 
2@23. Each spectrum is an ensemble average of at least fifty individual 1024 point 
realizations of signal traces, reproduced at even time intervals. The traces were 
generated from the raw data traces at  twice the average data rate. The Gaussian 
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FIQURE 22. Power spectra of the normal velocity signals near y+ = 15 for the three lower 
Reynolds-number flows. (See figure 20 for legend and explanation of the axes.) 
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FIGURE 23. Power spectra of the Reynolds-stress signals near y+ = 15 for the three lower 

Reynolds-number flows. (See figure 20 for legend and explanation of the axes.) 

digital filter for each trace was set with the half power point at a frequency 
corresponding to twice the viscous frequency (i.e. w+ = 2.0). This ensured that the 
effect of the filter was outside the energy-containing frequency range. Reconstruction 
at twice the data rate was done in an attempt to ensure that all of the intermittent 
high-frequency contributions were included in the spectra. A few of the power 
spectra were computed from traces generated at the average data rate and showed 
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FIGURE 24. Power spectra of the streamwise velocity signals near y+ = 125 for the three lower 
Reynolds-number flows. (See figure 20 for legend and explanation of the axes.) 
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FIGURE 25. Power spectra of the normal velocity signals near y+ = 125 for the three lower 
Reynolds-number flows. (See figure 20 for legend and explanation of the axes.) 

no appreciable difference in the spectra. Additional information about the power 
spectrum algorithm may be found in Wei (1987). 

Figures 20 and 21 show the wpower spectra for the conditions described in the 
previous paragraphs. There is appreciable scatter at lower frequency, but generally 
the u-power spectra indicate that the lower frequency, energy-containing eddies 
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FIGURE 26. Power spectra of the Reynolds-stress signals near y+ = 125 for the three lower 

Reynolds-number flows. (See figure 20 for legend and explanation of the axes.) 

scale on inner variables. The behaviour of these spectra a t  high frequency (where the 
energy in the spectrum is low) are more clearly displayed in figure 21 in which 
the ordinate is !P plotted on a logarithmic scale. The three spectra begin to  diverge 
at  w+ = 0.4 (log [w+] = - 0.4). In  the non-dimensional frequency range, 
0.4 < w+ < 1.0( -0.4 < log [w'] < O.O) ,  there is greater energy a t  the high frequencies 
with increasing Reynolds number. Because these high frequencies correspond to  
smaller eddies, this demonstrates that in non-dimensional terms, smaller eddies 
appear a t  higher Reynolds number which is consistent with the notion of increased 
vortex stretching at higher Reynolds numbers. 

The increase in the streamwise kinetic energy with increasing Reynolds number is 
very slight since the energy in the frequency range 

0.4 < W+ < 1.0( -0.4 < log [w'] < 0) 

is small. Thus, near y+ = 15 the effect of vortex stretching is visible in the u-power 
spectra, but is not readily apparent in the u'Iu, measurements. Indeed, for y+ < 12, 
the u'/u, data in figure 15 appear to scale with inner variables. 

The v-power spectra near the wall, presented in figure 22, do not scale on inner 
variables over a large portion of the energy-containing frequency range. Like the u- 
spectra, the three spectra diverge with increasing values of w+, but a t  much lower 
frequencies. While the two higher-Reynolds-number spectra appear to scale for 
log@+ < -l(o+ d O . l ) ,  the lowest-Reynolds-number spectrum does not intersect or 
overlap the other spectra at any point. Observe that a t  any non-dimensional 
frequency, w+, in the range, - 1 < logw+ < 0.5 (0.1 < w+ < 3.0), the value of Y for 
the Re = 14914 spectrum is nearly 2.5 times the value of Y a t  Re = 2970. This is 
consistent with the observation that the d /u7  profiles do not scale on inner variables 
even very close to the wall. 

The power spectra of the time-dependent Reynolds-stress signals near the wall, 
depicted in figure 23, closely resemble the v-power spectra just discussed. This is 
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consistent with the fact that the Reynolds-stress fluctuations are the product of u 
and v. Since the u-power spectrum appear to scale on inner variables up to quite high 
frequencies, the uv and v-power spectra should be similar, particularly a t  lower 
frequencies. 

Kim, Kline & Reynolds (1971) used flow-visualization methods to  demonstrate 
that  essentially all of the Reynolds stress in a turbulent boundary layer was 
produced during the bursting time in the zone near the wall, 0 < y+ < 100. The 
Reynolds-number range of their investigation, based on outer variables (i.e. free- 
stream velocity and boundary-layer thickness), was 5550 < Re, < 10645. This 
approximately coincides with the lowest two Reynolds-number cases, Re = 2970 and 
14914, covered in this investigation. In  this Reynolds-number range, the results of 
Kim et al. (1971) indicate that the Reynolds stress and associated fluctuations are 
produced by intermittent velocity fluctuations during the bursting time ; between 
bursts there is little Reynolds stress. One can therefore associate the lack of inner 
scaling of both the Reynolds-stress fluctuations and the v-velocity fluctuations with 
the lack of scaling on inner variables of the process responsible for the generation of 
the Reynolds stress during bursting. As previously suggested, it is believed that this 
process is essentially the intermittent process of stretching of hairpin vortices. 

Since the velocity gradient decreases with increasing distance from the wall, the 
stretching of the fluctuating vorticity field by the mean flow decreases with 
increasing distance from the wall. It is therefore expected that the power spectra 
taken at y+ = 125, corresponding to the outer limit of the inner region, should 
demonstrate some high-frequency Reynolds-number dependence. However, owing to 
the diminished stretching of vorticity farther away from the wall, this effect will be 
weaker than that found in the spectra measured close to the wall. 

The streamwise and normal power spectra for the three lower Reynolds numbers 
near y+ = 125 are shown in figures 24 and 25. Both figures exhibit Reynolds-number 
effects a t  the high frequencies. However, as expected, comparison of figures 20 and 
22 with figures 24 and 25 respectively show that the Reynolds-number effect is 
stronger close to the wall. Comparison of the Reynolds-stress spectra at y+ = 15 and 
a t  yf = 125, shown in figures 23 and 26, yields the same conclusion. 

It may be observed that the low-frequency range of the spectra a t  y+ = 125, shown 
in figures 24-26, does not scale with inner variables. This is consistent with the 
measurements of Bradshaw (1967) who hypothesized that the lack of scaling at low 
frequencies was due to large scale ‘ inactive ’, essentially irrotational motions in the 
outer region. This may be thought of as low frequency ‘sloshing’ of the outer region 
fluid. 

The concept of increased stretching of the hairpin vortices with increasing 
Reynolds number is useful in explaining the Reynolds-number effects observed in the 
time-averaged quantities shown in figures 15 and 18. As the Reynolds number 
increases, there is an increase of vorticity in the legs of the hairpin vortices. Very 
close to the wall the legs of the hairpin vortices are essentially aligned parallel to the 
wall. The induced velocities would therefore be primarily normal to the wall. As the 
Reynolds number increases a stationary probe, located very close to the wall, would 
detect larger v-fluctuations as the hairpin vortices are convected past the probe. It 
is not clear that equally large u-fluctuations would be detected. This is consistent 
with the results shown in figure 15 where, for y+ < 12, the non-dimensional 
streamwise turbulence intensity profiles scale on inner variables and do not change 
with Reynolds number, but the non-dimensional v-fluctuations do not scale on inner 
variables and increase with increasing Reynolds number. 
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Further away from the wall, the hairpin-vortex legs rise from the wall and connect 
to the vortex heads. Between the legs, there is an induced flow in the negative u- 
direction and in the positive v-direction. Increased stretching of the vortices as the 
Reynolds number increases has a direct effect on the fluctuations in both u and v. In 
the range, 15 < y+ < 100, i t  would be expected that neither component of turbulence 
intensity, u' nor v', would scale on inner variables. This result is readily observed in 
figure 15, since the non-dimensional turbulent intensities increase with Reynolds 
number in the range, 15 < y+ < 100. 

Increases in the strength of both u- and v-fluctuations resulting from the stretching 
of vortices also result in increased Reynolds stress fluctuations. If a hairpin were to 
pass directly over a stationary probe so that the legs of the hairpin straddle the 
sensor, the probe will detect a decrease in u and an increase in v. If the hairpin passes 
to either side of the probe, the fluctuations will be reversed. In  either event, this 
corresponds to negative contributions to (uv). The magnitudes of the Reynolds- 
stress fluctuations, non-dimensionalized on inner variables, would increase with 
Reynolds number as dictated by the increased stretching of the vorticity field. In the 
relatively quiescent periods between the passage of hairpin vortices, there is little 
Reynolds stress. Thus, increased stretching of the hairpin vortices causes the 
magnitude of the local average Reynolds stress to be larger. This would explain why 
the maxima of the Reynolds-stress profiles, shown in figure 18, increase with 
Reynolds number. It also agrees with the idea that there must be a Reynolds-number 
range in which the non-dimensional Reynolds-stress maximum evolves from zcro, in 
the laminar-flow case, and approaches some value not greater than unity, in the 
infinite-Reynolds-number case. 

An argument in favour of inner scaling a t  high Reynolds numbers can be made 
with the aid of the Reynolds-stress plot shown in figure 16. It was pointed out in 
54 that the maxima of the non-dimensional Reynolds-stress profiles increase and 
move closer to the wall with increasing Reynolds number. In  the limit of infinite 
Reynolds number the pressure gradient, which drives the flow in the channel, is 
balanced everywhere by turbulent momentum exchange except in a very thin region 
near the wall. At very high Reynolds number, the Reynolds-stress profiles should 
closely approach the solid line in figure 16, except, of course, in the thin region near 
the wall where the Reynolds stress must be zero and viscous forces are dominant. 

At high Reynolds numbers, the Reynolds-stress profiles will be very close to the 
infinite Reynolds-number profile. An increase in Reynolds number will no longer 
significantly change the Reynolds-stress profiles. The physical interpretation is that 
the process of vortex stretching in the inner region is no longer a function of Reynolds 
number. At these high Reynolds numbers, it is possible that inner scaling of the mean 
and fluctuating quantities will exist. 

5.3. The effect of channel geometry 

The interaction of turbulence from opposing walls has been observed in previous 
investigations which were motivated by the desire to  understand when and how a 
channel or pipe flow becomes fully developed. Pate1 (1974) and Reynolds (1974) 
reported that the mean and fluctuating velocity profiles in a turbulent pipe indicate 
that the flow is not fully developed until as many as 50-80 pipe diameters 
downstream of the inlet. This was true in spite of the fact that the pressure gradient 
was constant and appeared to indicate that the flow was fully developed 10-20 
diameters from of the inlet. 

Dean & Bradshaw (1976) verified that there was significant interaction of 
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FIGURE 27. Sample time-dependent Reynolds-stress trace at the lowest Reynolds number, Re = 
2970, and y’ = 122 (y/b = 0.726). The abscissa is non-dimensionalized on the viscous timescale, and 
the ordinate is non-dimensionalized on the mean Reynolds stress. 

structures from opposing walls. By heating the fluid on one side of a rectangular 
channel, they were able to observe that fluid from opposite walls regularly crossed 
the centreline. They found that the flow did not become fully developed until the 
interaction reached an asymptotic state. 

A fully developed turbulent channel flow may loosely be thought of as two 
boundary layers placed back to  back which are continually interacting. From 
symmetry, the velocity gradient, dU/dy, and the Reynolds stress, -p<uv), must be 
zero a t  the centreline. At the lowest Reynolds number examined in this investigation, 
R e  = 2970, the dimensionless channel half-width is only 170 viscous lengths. This 
places the channel centreline barely outside the inner region of either wall; there 
really is no outer region in this flow. 

In  this low-Reynolds-number turbulent flow, a turbulent burst occurring at one 
wall may extend well across the centreline to the far wall. Bursts from either wall 
would then regularly extend into the inner region of the opposing wall. Since the 
mean spanwise vorticity from one wall is oriented in a direction opposite to the 
vorticity a t  the other wall, the two walls constantly exchange counter-rotating fluid 
between their respective inner regions. This is what will be referred to as the 
‘geometry effect ’. 

For the highest-Reynolds-number flow, the centreline of the channel was 1655 
viscous lengths from the wall. Consequently, a large percentage of the channel was 
occupied by the outer region. It should be expected that the degree of interaction 
between the’inner regions of the two walls would be less than in the low-Reynolds- 
number case. 

In  this investigation, evidence of the geometry effect at low Reynolds numbers 
appears in the time-dependent Reynolds stress traces. Figures 27 and 28 are sample 
traces a t  the lowest, Re = 2970, and higher intermediate, R e  = 22776, Reynolds 
numbers, respectively. The instantaneous uv measurements are non-dimensionalized 
with respect to the appropriate long-time averaged values. Note that non- 
dimensionalizing the individual uv products by the local mean Reynolds stress inverts 
the trace; negative contributions to ( u v )  appear above the time axis. The time is 
non-dimensionalized on viscous units. The lower-Reynolds-number trace was 
recorded 122 viscous length from the wall, corresponding to y l b  = 0.726. The higher- 
Reynolds-number trace was reconstructed from data taken 127 viscous lengths from 
the wall. However, in the latter case, this corresponded to y l b  = 0.126. 

4 FLM M1 
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FIGURE 28. Sample Reynolds-stress trace at Re = 22776, and y+ = 127 (y/h = 0.126). Tho abscissa 
is non-dimensionalized on the viscous timescale, and the ordinate is non-dimensionalized on the 
mean Reynolds stress. Observe the qualitative differences between figures 27 and 28. 

There are a large number of both positive and negative Reynolds-stress 
fluctuations in figure 27. This indicates that, a t  that  location, the probe is sensing 
bursting events from both channel walls. The mean Reynolds stress value is small, 
- (uv)/u,2 = 0,220, because the contributions, of opposite sign, from both walls 
cancel each other over time. At low Reynolds numbers, therefore, the Reynolds 
stress at the channel centreline is zero not because there are no Reynolds-stress 
fluctuations there, rather, the fluctuations from both walls cancel each other in a 
statistical sense over time. 

In  contrast, the higher-Reynolds-number trace in figure 28, at y+ = 127 and 
y/b = 0.126, has more negative fluctuations than positive ones. The mean value of 
- (uv)/u," is 0.817. Individual large amplitude fluctuations are signatures of passing 
bursts from one wall only. There is little evidence of bursts from the far wall affecting 
the inner region at the higher Reynolds numbers which would appear as large 
positive-amplitude Reynolds-stress fluctuations. 

5.4. Additional comments 

There are a number of ramifications of these results on current channel-flow research. 
First, practically all of the channel-flow research performed to date was conducted 
within the Reynolds-number range covered by this investigation. As pointed out in 
§ 1.1, virtually all of these investigators have assumed, a praori, the existence of a 
Reynolds-number-independent inner scaling. It may be necessary to  reassess many 
of the conclusions which were drawn using the inner-scaling assumption. 

Secondly, very close to the wall, probe resolution is a critical problem. Laufer's 
(1950) data, in particular, demonstrate the loss of spatial resolution in X-wire 
measurements with increasing Reynolds number. At his highest Reynolds number, 
Laufer's X-wire probe was approximately 25 viscous units in length. The gpacing 
between wires was probably also large. One can see that the maximum values of his 
turbulence-intensity profiles decrease with increasing Reynolds number. This 
contradicts physical reasoning, and is contrary to the results of this investigation. 

Willmarth & Bogar (1977) demonstrated that an X-wire probe does not work 
properly if the wires are immersed in a flow with small-scale regions of very high 
shear. I n  such flows, the two wires will often sense different parts of the local shear 
region. The assumption that the X-wire is immersed in a locally uniform flow field is 
not valid. 
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The LDA used in this study does not suffer from that problem. One may actually 
think of the probe as the seeding particle itself. The LDA measurement of the particle 
velocity, assuming the settings of the burst detection apparatus are correct, is a true 
representation of the flow velocity in the immediate vicinity of the particle. In this 
case, the average spatial resolution of the ‘probe’ was 3 pm. The spatial resolution 
of the LDA is limited by the inability to determine the exact location of the particle 
inside the measurement volume. This is very different from the X-wire problem, 
where one has limited confidence in not only the spatial location of the measurement, 
but of the measurement itself. 

Clearly, the Reynolds-number effects demonstrated in this study are not caused by 
the decrease in spatial resolution with increasing Reynolds number. The data from 
the literature demonstrates that  the loss of spatial resolution with increasing 
Reynolds number results in values of the root-mean-square velocity-fluctuation 
measurements which are too low. This investigation demonstrates that the maximum 
values of the turbulence intensity profiles increase with increasing Reynolds number. 
Therefore, the Reynolds-number effect cannot be attributed to probe resolution 
problems. In  fact, it  is believed that the non-dimensional probe size of this LDA a t  
the higher Reynolds numbers was significantly smaller than any probe used to date. 

Finally, this study indicates that  there are fundamental differences between the 
turbulent flows in a circular pipe, a rectangular channel, and a zero-pressure-gradient 
boundary layer. It was observed that in the channel flow, the inner-region structure 
from the opposing walls interacted. There was a constant interchange of counter- 
rotating vorticity between the two inner regions due to bursting. There cannot be a 
similar phenomenon occurring in a boundary layer because there is only one wall. 
The circular pipe flow will be more complex. The curvature of the pipe wall means 
that the inner-region structure from different circumferential locations can interact 
a t  the centre of the pipe. Clearly, the resulting turbulent structure of the three-flow 
geometries will be different. 

6. Conclusions 
High-resolution, two-component LDA measurements were made in a fully 

developed turbulent channel flow over a Reynolds-number range of 3000 to 40000. 
The data rates obtained were sufficiently high to reconstruct the time-dependent 
velocity signals. From these reconstructed signals, the time-averaged mean and 
fluctuating quantities were calculated. Critical examination of these results led to  the 
following conclusions : 

(i) Inner scaling laws of the fluctuating quantities in the inner region are Reynolds- 
number dependent over the range examined. 

(ii) Near the wall, a t  yf = 15, power spectra of the streamwise velocity fluctuations 
appear to scale with inner variables over most of the energy-containing frequency 
range. 

(iii) However, a t  the same y+ = 15 location, spectra of the velocity fluctuations 
normal to the wall and the fluctuating Reynolds stress do not scale on inner variables 
in the energy-containing frequency range. 

(iv) The lack of inner scaling is primarily due to  increased stretching of the inner- 
region vorticity field in the stream direction. 

(v) There is also a geometry effect whereby the inner-region structure from 
opposing channel walls interact, particularly at lower Reynolds numbers. 
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